[1] Yingchen Song, Yaobin Wang*, Chaoyu Xiong, Tianhai Wang, Pingping Tang, An Efficient Sampling-Based SpMM Kernel for Balancing Accuracy and Speed in GNN Inference, 22nd IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA2024), Kaifeng, China, pp.468-475, 2024.11.(CCF)
[2] Shuang Yang, Yaobin Wang*, Ling Li, Jiawei Qin, Guotang Bi, Implementation and Optimization of 8×8 Block Discrete Cosine Transform on MGPUSim, 22nd IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA2024), Kaifeng, China, pp.832-839, 2024.11.(CCF)
[3] Jiawei Qin, Yaobin Wang*, Ling Li, Shuang Yang, Xiaorong Zhang, P-AES: Advanced Encryption Standard Parallel Optimization on MGPUSim, 22nd IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA2024), Kaifeng, China, pp.1988-1993, 2024.11.(CCF)
[4] Yutao Peng, Yaobin Wang*, Tianhai Wang, Mei Han, Yunxin Xu and Pingping Tang, PIK-Convolution: Step Convolution Acceleration Based on Multi-GPU Architecture, 22nd IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA2024), Kaifeng, China, pp.2240-2243, 2024.11.(CCF)
[5] Tianhai Wang, Yaobin Wang*, Yutao Peng, Yingchen Song, Qian Peng, Pingping Tang, Accelerating Sparse Matrix-Matrix Multiplication by Adaptive Batching Strategy on MGPUSim, 22nd IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA2024), Kaifeng, China, pp.26-33, 2024.11.(CCF)
[6] Chaoyu Xiong, Yaobin Wang*, Yaqing Zhang, Yingchen Song, Mei Han, Pingping Tang, Accelerating GEMM by Coordinated Tiling and Batching Framework on GPU, CCF Computility 2024(已推荐发表到IEEE Transactions on Consumer Electronics), Changchun, China, 2024.07. (JCR 2区, IF: 4.3)
[7] Yutao Peng,Yaobin Wang*, Yufang Chen, Mingfeng Guo, Yaqing Zhang, Yangsong Zhang, Pingping Tang, Realize the image classification task based on MindSpore framework. 7th International Conference on Vision, Image and Signal Processing (ICVISP 2023), pp. 245-248. 2023.11. (EI)
[8] Mingfeng Guo, Yaobin Wang*, Qi Huang*, Yufang Chen, Huan Liu, Huarong Chen, Yajun Gu, Dongxuan Han, Chunhua Deng, Hengyang Xu, Pingping Tang, BS-SpMM: Bs-SpMM: Accelerate sparse matrix-matrix multiplication by balanced split strategy on the GPU, 42nd IEEE International Conference on Computer Communications (INFOCOM2023), New York, USA, 2023.05. (CCF)
[9] Yaqing Zhang, Yaobin Wang*, Zhangbin Mo, Yong Zhou, Tao Sun, Guang Xu,Chaojun Xing, Liang Yang, Accelerating small matrix multiplications by adaptive batching strategy on GPU, 24th IEEE International Conference on High Performance Computing & Communications (HPCC2022), Chengdu, China, pp.882-887, 2022.12. (CCF)
[10] Mingfeng Guo, Yaobin Wang*, Jun Huang, Qingfeng Wang, Yaqing Zhang, Mu Xu, Fang Lu, Rgs-SpMM:Accelerate sparse matrix-matrix multiplication by row group splitting strategy on the GPU, 19th Annual IFIP International Conference on Network and Parallel Computing (NPC2022) , Jinan, China, pp.61-66, 2022.12. (CCF) (EI No.20225213287370)
[11] Zhangbin Mo, Yaobin Wang*, Qingming Zhang, Guangbing Zhang, Mingfeng Guo, Yaqing Zhang, Chao Shen, The Parallelization and Optimization of K-means Algorithm Based on MGPUSim, 31st International Conference on Artificial Neural Networks (ICANN2022), Bristol, UK, pp.309-320, 2022.09. (CCF) (EI No.20223912808933)
[12] Huiling Meng, Yaobin Wang*, Ling Li, Manasah Musariri, Xinyi Wang, Parallel analysis of TACLeBench kernel benchmark’s loop and procedure level speculation, 19th IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA 2021), New York, USA, pp.1035-1040, 2021.10. (CCF) (EI No.20220611605198)
[13] Xinyi Wang, Yaobin Wang*, Ling Li, Yang Yang, Deqing Bu, and Manasah Musariri, Procedure and Loop Level Speculative Parallelism Analysis in HPEC, 20th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP2020), New York, USA, pp.47-60, 2020.10. (CCF) (EI No. 202004209370750)
[14] Deqing Bu, Yaobin Wang*, Ling Li, Zhiqin Liu, WenxinYu, Musariri Manasah, Exploring Parallelism in Mibench with Loop and Procedure Level Speculation, 16th IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA 2018), Melbourne, Australia, pp.141-146, 2018.12. (CCF)
[15] 王耀彬,吴欣宇,秦佳伟,唐苹苹,许芸欣,一种基于 POSIT 的大语言模型浮点运算优化方法,发明专利,2024.(申请号:202411224249.0)
[16] 李凌,杨爽,王耀彬,秦佳伟,黄潇宇,一种多GPU平台上8×8块离散余弦变换算法的并行优化方法,发明专利,2024.(申请号:202410924099.8)
[17] 李凌,秦佳伟,王耀彬,杨爽,雷宇航,一种多GPU平台上Advanced Encryption Standard (AES)加密算法的自适应分块并行优化方法,发明专利,2024.(申请号:202410926285.5 )
[18] 刘欢,罗溢,王耀彬,王琪,易欣曦, 一种三缓存加速 GNN 推理的方法,发明专利,2024.(申请号:202410914147.5)
[19] 刘欢,欧洪余,王耀彬,吴欣宇,张筱竹, 一种基于RISC-V 向量的深度神经网络量化加速方法,发明专利,2024.(申请号:202410831667X)
[20] 刘欢,聂金瞳,王耀彬,黄法钧,一种使用重叠图对三代宏基因组分箱的方法,发明专利,2024.(申请号:202410721171.7)
[21] 刘欢,黄法钧,罗敏中,王耀彬,聂金瞳,一种基于 syncmer 的进化距离估计及系统发育树构建方法,发明专利,2024.(申请号:202410791353.1 )
[22] 王耀彬,吴欣宇,唐苹苹,欧洪余,刘基宏,一种基于RISC-V的可伸缩Posit向量扩展方法,发明专利,2024.(申请号:202410637730.6)
[23] 王耀彬,王琪,唐苹苹,罗溢,江晶蕊,一种自适应的行合并与划分策略的稀疏矩阵乘设计,发明专利,2024.(申请号:202410473777.3)
[24] 王耀彬,杜茜,唐苹苹,杨雨鑫,彭玉涛,一种多GPU平台的Cooley-Tukey FFT算法高性能优化方法,发明专利,2024.(申请号:202410231117.4 )
[25] 王耀彬,宋英辰,唐苹苹,熊朝玉,程童,一种加速图神经网络中稀疏-稠密矩阵乘的自适应边采样方法,发明专利,2024.(申请号:202410713500.3)
[26] 王耀彬,王天海,唐苹苹,莫章彬,陈灵,一种多 GPU 平台上软硬件协同的朴素贝叶斯算法并行优化方法,发明专利,2023.(申请号:202310584047.6)
[27] 王耀彬,张梦洋,唐苹苹,郭明峰,胡丽莎,一种图神经网络训练中的定长式边点结合采样机制,发明专利,2023.(申请号:202310395448.7)
[28] 王耀彬,莫章彬,唐苹苹,王天海,韩翔宇,一种多 GPU 平台上并行双调排序的 K-最近邻算法并行优化方法,发明专利,2023.(申请号:202310398414.3)
[29] 王耀彬,郭明峰,唐苹苹,黄海涛,彭玉涛,一种基于GPU加速稀疏-稠密矩阵乘的自适应平衡划分方法,发明专利,2023. (申请号:202310306441.3)
[30] 王耀彬,张雅晴,唐苹苹,申超,张梦洋,斯炫玮,韩梅,一种基于GPU 线程并行的自适应多矩阵块映射批处理方法,发明专利,2022.(申请号:202211589330.X)
[31] 王耀彬,申超,唐苹苹,刘欢,杨梁,从明,陈俊仕,安虹 ,一种基于全局索引表的快速特征采集方法,发明专利,2022.(申请号:202211552678.1)
[32] 王耀彬,申超,唐苹苹,杨洋,张雅晴,莫章彬,郭明峰,一种图神经网络采样流程中基于流水线并行的数据传输过程的优化,发明专利,2022.(申请号:202211147165.2)
[33] 王耀彬,王欣夷,唐苹苹,孟慧玲,异构众核上基于剖析技术以及数据流信息的动态资源调度方法,发明专利,2020.(申请号:202010620529.9)
[34] 王耀彬,卜得庆,唐苹苹,王欣夷,李凌,孟慧玲,刘启川.一种基于注意力机制的胶囊网络多特征提取方法,发明专利,2019. (申请号:201910689204.3)